

Intelligent Virtual Platform for Real-time Cybersickness Detection and Adaptation

Offline training for Cybersickness detection limitations: Lack of individualization, Potential data bias, Difficulty in adapting to new users or scenarios.

Contribution

Real-time training of the AI model using minimal user-specific data, enabling personalized Cybersickness detection and dynamic adjustment of the VR simulation.

Data

• Eye Tracker

Operating the entire process, including data collection, training, Cybersickness detection, and adaptation within a closed-loop system, optimizing efficiency.

Pre-Study Results

- Decrease in the slope coefficient of the EDA signal in the adaptation phase, in contrast to the accumulative effect of motion sickness.
 - EDA slope coefficient: p = 0.0440
- Improved stability and consistency of eye movements during the adaptation phase.
 - Eye velocity p = 1.3922e 190
 - Eye angular velocity p = 5.676e-110
 - Eye movement distance p = 0.0049

Experiment Setup Driving Simulator

IEEE

TABLE II
COMPARISON OF EYE MOVEMENT SIGNAL

Phase	Velocity Variance	Angular Velocity Variance	Movement Distance mean
Training	1.47e-4	8.4e-3	6.3820e-2
Adaptation	3.06e-5	2.0e-3	6.3818e-2

- Azadeh Hadadi
- <u>⊲azadeh.hadadi@kit.edu</u>
- •Jean-Rémy Chardonnet ∠jean-remy.chardonnet@ensam.eu
- •Christophe Guillet • Jivka Ovtcharova
- christophe.guillet@u-bourgogne.fr jivka.ovtcharova@kit.edu